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The so-called shooting-bead method is a fast and easy experimental technique for evaluating cantilever
stiffness and flexural rigidity of semiflexible to semirigid rodlike biological and nano-filaments based on the
measurement of just two distances. In this paper we have derived the shooting-bead formula for cantilever
stiffness and flexural rigidity taking into account the effects of the viscous drag force exerted on the filament
itself. To this end, we have defined a key variable, called the filament energy-loss factor �or filament drag
factor�, which accounts for all the energy-loss effects. It has been shown that due to the logarithmic depen-
dence of the filament energy-loss factor on the radius and the length of the filament, inclusion of this factor in
the formula for the flexural rigidity has a very noticeable effect on the result even for very thin or long
filaments. It has also been shown that the effect due to the consideration of filament energy-loss factor on
calculation of the flexural rigidity increases with increasing the flexibility of the filament. We have also
considered various sources of experimental error and estimated their effects.
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I. INTRODUCTION

When viewing the individual living cell as a nanome-
chanical and nanoelectronic device, we need to know what
the physical properties of its internal hardware are. Interiors
of living cells are structurally organized by the cytoskeleton
networks of filamentous polymers whose biomechanical
properties are of key interest to biophysicists. With few ex-
ceptions, the filaments of importance to the cell are all made
up of protein polymers.

The cytoskeletal network of filaments has the responsibil-
ity of defining cell shape, protecting the cell from changes in
osmotic pressure, organizing its contents, providing cellular
motility, and finally is responsible for separating chromo-
somes during mitosis. Protein filaments of the cytoskeleton
consist of actin �micro-filaments �MFs��, intermediate fila-
ments �IFs�, and microtubules �MTs�. Throughout the cell a
network of contractile actin bundles exerts tension and pulls
the cell’s membrane toward the nucleus at the core. MTs
resist the compressive force of the actin cables providing a
balance. IFs provide additional structural stability.

Micro-filaments are single-stranded filaments, with diam-
eters of approximately 3–6 nm and variable lengths. Micro-
filaments are found linked together by actin-associated pro-
teins and congregate into one of the three major forms. There
are over 100 different actin-binding proteins responsible for
actin associating with the membrane, with membrane-bound
receptors and with ion channels, as well as for promoting
assembly and causing the depolymerization of those fila-
ments. Actin-binding proteins, such as ARP2/3 and profilin,
regulate micro-filament assembly. Actin depolymerizing
factor/cofilin stimulates disassembly. Gelsolin caps fast-

growing ends of filaments and may also be involved in fila-
ment disassembly.

Microtubules are long hollow filaments consisting of
bound �-tubulin and �-tubulin monomers. MT polymeriza-
tion can be controlled by temperature and pH—a concentra-
tion of protein and ions to produce closely or widely spaced
MTs, centers, sheets, rings, and even the so-called macro-
tubes that have diameters in the range of 200–500 nm and
are polymerized with the influence of an elevated zinc ion
concentration �1�. Assembled microtubules have outer diam-
eters of 25–26 nm and inner diameters of 15 nm and typi-
cally contain 13 protofilaments when assembled in vivo. MTs
are made up of 12–17 protofilaments under in vitro condi-
tions. Each protofilament is shifted lengthwise with respect
to its neighbor describing left-handed helical pathways
around the MT. Like actin filaments, microtubules have plus
and minus ends. Polymerization or elongation occurs prefer-
entially at plus ends and depolymerization or shortening oc-
curs at minus ends. Microtubule associated proteins �MAPs�
are tissue and cell-type specific and represent several classes
with different functions. General classes are minus-end bind-
ing, plus-end binding �e.g., the kinetochore of mitotic chro-
mosomes, polymer severing, polymer stabilizing� and cross-
linking �i.e., MAP-2 and tau in neurons�, and motor proteins.
These microtubule binding proteins determine the architec-
ture of microtubules and microtubule assemblies.

All of the above cellular protein filament structures have
significant persistence lengths that increase with the molecu-
lar mass of the building block and related mechanical stabil-
ity and rigidity that are of growing interest to physicists.
F-actin can support large stresses �2� without a great deal of
deformation and it ruptures at approximately 3.5 N /m2. Ma
et al. �3� showed that IFs resist high applied pressures by
increasing their stiffness. They can withstand higher stresses
than the other two components without sustaining mechani-
cal damage �2�. By biological standards, MTs are rigid poly-
mers with a large persistence length �4� of 6 mm. From ex-
periments of Janmey et al. �2�, MTs exhibit a larger strain for
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a small stress compared �3� to either MFs or IFs. The rupture
stress for MTs is very small and typically is only about
0.4–0.5 N /m2. The lateral contacts between tubulin dimers
in neighboring protofilaments play a decisive role in MT
stability, rigidity, and architecture �5�. Tubulin dimers are
relatively strongly bound in the longitudinal direction �along
protofilaments�, while the lateral interaction between
protofilaments is much weaker �6�. There have been a num-
ber of theoretical �7,8� and experimental �9� studies in recent
years dealing with the various aspects of the elasticity of
MTs.

In this paper we propose a simple method of determining
the stiffness of semiflexible polymers such as MTs or indeed
bundles of such filaments �10� and provide a theoretical
framework for interpreting the experimental results. One of
the main issues in this paper is not only the analysis of the
shooting-bead method �11� as applied to the nano- and bio-
filaments but, more specifically, how the drag forces exerted
on the filament present in the viscous medium affect the
energy loss and consequently the measurement’s results. This
method is especially suited for stiff filaments or their bundles
�e.g., cilia, flagella, macrotubes, or MAP–interconnected MT
bundles in axons�. Even for individual microtubules, where
Taute et al. �12� determined that filament drag is a major
effect for the bending of MTs, the length of the filament
makes a crucial difference to the cantilever stiffness such that
short MTs become stiffer and the resultant motion of the
bead is underdamped making the method applicable. More-
over, the method described below can be readily utilized for
nanotechnologically produced filaments such as single-
walled or multiwalled carbon nanotubes �CNTs� �13� that
provide an excellent system for calibration and control.

II. CONCEPTUAL BASIS

In Fig. 1 we show a schematic of two states of a typical
semiflexible rodlike bio- or nano-filament, which is clamped
at one end to a pivot point and whose other �free� end first

has been pushed down by a bead inside an optical trap
�14,15� and then has been released by turning the laser trap
off. The cantilever stiffness of a rod with length L is k and
the radius of the bead is denoted as R. Typical bead diam-
eters are approximately 1–2 �m �with focused laser, it is
possible to trap beads with a radius as low as 200 nm�, while
the rod diameters range between 100 nm for microtubule
bundles, 200–500 nm for macrotubes, and about 500 nm for
cilia. Also nanotechnology methods allow us to make fila-
ments from different materials with controlled values of their
radii. For example, it is now possible to make single-walled
or multiwalled CNTs with different radii ranging from a few
to 100 nm.

In this paper, our primary aim is to expand the proposed
method for measuring filament stiffness in order to include
the effects of the energy loss due to the viscous drag force
exerted on the filament itself and to make the final shooting-
bead formula as accurate as possible. While the commonly
employed wormlike chain model has become standard in the
description of semiflexible and flexible polymers such as
DNA, this is not a necessary level of approximation for
stiffer filaments that have long persistence lengths such as
MTs, cilia, flagella, or CNTs where small deflection approxi-
mation can be warranted. For example, the mm-range persis-
tence lengths and a high level of rigidity characteristic of
MTs translate into a picture where a significant thermal fluc-
tuation in shape occurs over tens to hundreds of thousands of
constituent dimers. In this paper we also wish to provide a
means of estimating experimental errors for the shooting-
bead formula and assess under which instrumental resolution
this method will be able to work. To make the paper self-
contained and use the results of the intermediate steps yield-
ing the first shooting-bead formula �11� �when the bead’s
diameter is much larger than that of the rod�, in this section
we briefly explain the concepts involved in the method.

Assuming that we can keep the rod in its bent conforma-
tion over a certain period of time, we can now imagine that if
we suddenly turn the optical trap �laser tweezer� off, the
force holding the rod down is abruptly removed. Hence, the
bead that was pushing down on the free end of the rod while
in the trap will now experience a reaction force from the tip
of the rod leading to its displacement from its previous po-
sition. The amount of displacement a when moving the bead
downward in the initial phase of the experiment will deter-
mine the initial position of the bead at the time of releasing it
from the tip of the rod. Following the release of the bead
from the laser trap, the bead will jump up. The motion of the
bead can be analyzed in terms of two contributions. First, the
bead experiences two forces, an upward force due to the
cantilever stiffness of the rod and a downward viscous drag
force �there are two other forces; Appendix A provides an
additional explanation of the effects created by these forces�.
The equation of motion for the bead together with the initial
conditions is given below:

mẋ = − kx − 6��Rẋ, x�0� = − a, ẋ�0� = 0. �1�

Note that m and � represent the mass of the bead and
viscosity of the solution, respectively. The solution of Eq. �1�

FIG. 1. Schematic illustration of the two states of the rodlike
biological filament and the bead. First, the filament has been pushed
by a bead inside an optical trap and second, when the filament has
been released and the bead has come to rest asymptotically. �Figure
not to scale, usually a, d, and R are much smaller than L�.
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with the initial conditions, which corresponds to under-
damped motion, is �16�

x�t� = − a exp�−
3��R

m
t�cos�� k

m
− �3��R

m
�2

t	 . �2�

The motion will be underdamped if the bead passes
through the origin and this condition applies to a rigid rod
and/or low viscous solution.1 In the second part of the mo-
tion �x�0�, the bead experiences just a downward viscous
drag force. This motion starts from the moment when the
bead passes through the origin at a time instant equal to t0

=� /2� k
m − � 3��R

m �2 in the first part of the motion. As a result,
the equation for the bead’s position as a function of time is
�11�

x�t� =
ma

6��R
� k

m
− �3��R

m
�2

exp�−
3�2�R

2m� k
m − � 3��R

m �2	
� �1 − exp�−

6��R

m
t�	 . �3�

Note that in the above equation we have shifted our initial
time from t= t0 to t=0. Since x�t→��=d �due to the expo-
nential dependence of x�t� on t just after passing a few inter-
vals of 	=m /6��R, asymptotic approach time constant, we
can consider the bead as being at rest� solving Eq. �3� for k
and using the Euler-Bernoulli bending formula �17� for small
deflection, we can find the following formula �which will be
referred to as the first shooting-bead formula� for flexural
rigidity2 of the filament:


 =
1

3
kL3 =

9��2L3

4�R � �2

4�W��a
4d ��2 + 1� . �4�

Note that the symbol W in the above equation is called the
Lambert W function3 �18�. Since it is easier to determine the
density of the bead, �, compared to its mass, we have
changed our variable from mass of the bead to its density at
this final point. This will also help in reducing the error when
calculating the error propagation for our formula if the origi-
nal information is based on the knowledge of the density and
radius of the bead.

To simplify the notation, we define the following new
variables for future calculations:

� =
3��R

m
, 
 =� k

m
− �3��R

m
�2

. �5�

III. ENERGY CONSERVATION AND FILAMENT
ENERGY-LOSS CONSIDERATION

In Sec. II the problem at hand has been solved analyti-
cally by including the net force exerted on the bead but ig-
noring the force exerted on the filament by the solution. It is
a good idea to investigate our solution from the conservation
of energy point of view at this stage. Since this part can be
considered as a totally separate part and in order to maintain
the main flow of the paper, this part has been moved to the
appendix. The interested reader can see the proof in Appen-
dix B.

Looking at the problem from the energy point of view
will guide us to define a very important parameter that can
help us to provide an estimate of the energy loss due to the
viscous force exerted on the filament based on the bead’s
energy loss.

In this section we intend to estimate the energy loss of the
filament �Q1R� and compare it with the energy loss of the
bead �Q1B� and the total energy loss �Q1T� during the first
part of the motion. To solve the problem analytically we
approximate the motion of the bent filament as a rotating rod
with the length of L /2 �see Fig. 2�. This is a good approxi-
mation because for a small deflection, the area swept by the
rod compared to the area swept by the whole filament
amounts to more than 2/3 �see Appendix C for a mathemati-
cal proof of this statement�.

The viscous drag torque exerted on the rod �BD� with
radius r that rotates with angular velocity � inside a medium
with viscosity � is equal to �9�

T =
1
6��L3

ln� L
2r� − 0.66

� . �6�

The infinitesimal energy loss of the rod when it rotates by
d� is therefore

dQ1R =
1
6��L3

ln� L
2r� − 0.66

�d� =
1
6��L3

ln� L
2r� − 0.66

�2dt . �7�

Here dt denotes the elapsed time for such an infinitesimal
rotation.

As we know, the tip of the filament pushes on the bead,
which means that the velocity of the tip is the same as the

1Theoretically it is always possible to have an underdamped mo-
tion for the bead by making the value of the quantity under the
square root in Eq. �2� positive. Even if we do not have an under-
damped motion for the bead at the beginning, by cutting the fila-
ment to a shorter length we can make k large enough �as we know,
k is inversely proportional to the third power of the length of the
filament� to end up with a positive value for the quantity under the
square root.

2As flexural rigidity �or bending stiffness� is the product of the
Young modulus, E, of the filament material and the second moment
of area, I, of the filament cross section, it is very common to use EI
instead of 
 for flexural rigidity.

3It is also called the omega function or product logarithmic
function.

FIG. 2. Representation of the filament as a rotating rigid rod
with the length of L /2. �Deflection angle CBD is exaggeratedly
shown�.
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velocity of the bead at any time during the first part of the
motion. Thus using v=L� /2 we find

dQ1R =
2
3��L

ln� L
2r� − 0.66

v2dt . �8�

To calculate the energy loss of the rod we have to inte-
grate an expression based on Eq. �8� but at this stage we
cannot do this yet because the equation of motion for the
bead �the system composed of the bead and the filament�
does not remain the same as before �when we ignored that
filament energy loss�. For this reason we just find the ratio of
the filament energy loss to the bead energy loss at the mo-
ment as this ratio plays an important role in our calculation.
Namely,

Q1R

Q1B
=

 dQ1R


 dQ1B

=
1

9 R
L �ln� L

2r� − 0.66� = � − 1. �9�

Therefore, knowing the radius of the filament, the length
of the filament and the radius of the bead � can be found.
Note also that � is the ratio of the total energy loss to the
bead energy loss that has a value greater than 1 and we refer
to it as the filament energy-loss factor or filament drag fac-
tor.

Figure 3 shows the filament energy-loss factor as a func-
tion of the filament radius for a 10-�m-long filament and
1 �m bead diameter. It should be stressed that although we
have found the ratio of Q1R /Q1B, we are not able to calculate
the filament energy loss at this stage. The reason for this is
that Q1B does not remain the same as before in the case when
filament energy loss is ignored �see Eq. �B4� or �B7� in Ap-
pendix B�. This means that the following relation is not cor-
rect:

Q1R = �� − 1�Q1 =
1

2
�� − 1�ma2�2

�� �2

4�W��a
4d ��2�1 − exp�− 2W��a

4d
�	� + 1� .

�10�

To calculate the correct filament energy loss we first need
to evaluate the new equation of motion �that will be solved in
Sec. IV� and then we need to follow all the steps that we
took to reach Eq. �B4� or �B7� for finding a new solution.

IV. EFFECTS OF FILAMENT ENERGY LOSS ON
DIMENSIONLESS FLEXURAL RIGIDITY CURVE

In this section we derive two equations for calculating the
cantilever stiffness and flexural rigidity with consideration of
filament energy loss. The equation of motion for the system
�bead+filament� is

�IB + IR��̈ = − k�L

2
�2

� −
1
6��L3

ln� L
2r� − 0.66

�̇ − 6���L

2
�2

�̇ .

�11�

Here, � is the angle between the rod and the undeflected
filament �the angle between BD and BC in Fig. 2�. Assuming
that r, a, and R are all much smaller than L and using the
definition of the filament energy-loss factor, the above equa-
tion becomes

IB + IR

� L
2 �2 �̈ = − k� − 6���R�̇ . �12�

Using the moment of inertia for a single particle �keeping in
mind that the radius of the bead is much smaller than the
length of the filament� with mass m and moment of inertia
for a rigid rod with length L /2 and mass mR, as well as the
relation between x and ��x=L� /2�, we obtain

�m + 1
3mR�ẍ = − kx − 6���Rẋ . �13�

Generally 1/6 of the mass of the filament is much smaller
than the mass of the bead. For example, even for a solid
filament �many bio-filaments or bundles of them can be con-
sidered to have hollow interiors such as microtubules or ma-
crotubes� with a radius of 100 nm �that would be a very thick
filament� and with a 10 �m length and the density of water,
the effect of ignoring the mass of the filament with respect to
the mass of the bead with a radius of 1 �m and the same
density is just 3.75%. Now, comparing the above equation
with Eq. �1� and eliminating mR, we notice that the only
difference between these equations amounts to the replace-
ment of � with ��. It means that we can use the solution of
that equation �with the same initial conditions� as a solution
of Eq. �13� where � is rescaled to become ��.

Defining the following new variables,

�� =
3���R

m
, 
� =� k

m
− �3���R

m
�2

, �14�

we find

0 50 100 150 200
1

1.2

1.4

1.6

1.8

r (nm)

α

FIG. 3. Filament energy-loss factor as a function of filament
radius for a 10 �m filament and a 1 �m bead diameter.
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x�t� = − a exp���t�cos�
�t� . �15�

It is clear that the second part of the motion of the bead
when it passes through the origin will satisfy the same dif-
ferential equation of motion but this time the initial condition
for the velocity will change to

ẋ�0� = a
� exp�−
���

2
�
� . �16�

As a result, the equation for the bead’s position as a func-
tion of time changes to

x�t� =
a
�

2�
exp�−

���

2
�
��1 − exp�− 2�t�� . �17�

Since x�t→��=d and using some algebra we arrive at

s� exp�s�� =
��a

4d
, �18�

where s� is a dimensionless variable equal to ���
2
�

.
The cantilever stiffness and the flexural rigidity will be

found from the following equations:


 =
1

3
kL3 =

9��2L3

4�R � �2�2

4�W���a
4d ��2 + �2� . �19�

Again we have changed our variable from mass of the
bead to its density in the last step. Note that the above for-
mula for the cantilever stiffness and flexural rigidity �the
second shooting-bead formula� for the case of �=1 reduces
to the first shooting-bead formula �when the filament energy
loss is not taken into account�.

Figure 4 shows the effects of filament energy-loss consid-
eration on the dimensionless flexural rigidity �11� curve as a
function of a /d for three different filament radii, which cor-

responds to three different values of the filament energy-loss
factor. To calculate the cantilever stiffness and the flexural
rigidity for any other radius, first the filament energy-loss
factor is calculated from Eq. �9� and then this value is sub-
stituted into Eq. �19�. As is clear from the graph for a single
value of the ratio of a /d, the dimensionless flexural rigidity
increases as a function of the filament energy-loss factor.
This is easy to understand since a higher fraction of the
bending potential energy of the filament will be used to can-
cel out the energy loss of the filament due to viscous drag
torque.

Another important outcome that we can conclude from
the effect due to the filament energy-loss factor on the di-
mensionless flexural rigidity curve is dependency of this ef-
fect on the ratio of a /d. Figure 5 shows the ratio of the
flexural rigidity with consideration given to the filament
energy-loss factor, 
�, to the flexural rigidity without consid-
ering the filament energy-loss factor, 
, as a function of a /d
for the two previously considered filaments.

As we see from this graph, 
� /
 increases for any fila-
ment �with the inclusion of the filament energy-loss factor�
when a /d increases. We also see from Fig. 4 that when a /d
increases for a filament with a known radius and length and
also a known bead’s radius �this means that we know the
filament energy-loss factor�, the dimensionless flexural rigid-
ity decreases. This leads us to state the following important
result: consideration of the filament energy loss (or filament
drag) is more important for filaments with less rigidity than
for stiff ones.

Since our answer is parametric and flexural rigidity de-
pends on the values of a /d, L, r, R, �, and � we can end up
with a wide range of values for flexural rigidity �note that the
method works provided the bead passes through the origin,
which means when we have underdamped motion for the
bead�, but we give a rough estimate of the flexural rigidity
value based on our pilot experiment �not reported in this
paper due to its preliminary character�. For an approximately
10 �m filament length, 100 nm filament radius �made from

0.2 0.4 0.6 0.8 1
0

30

60

90

120

150

180

a/d

κ
/κ

0

FIG. 4. A plot of the dimensionless flexural rigidity 
 /
0 as a
function of a /d for a 10 �m filament and 1 �m bead diameter for
three different situations: �a� the solid curve, without filament
energy-loss consideration �which corresponds to the filament
energy-loss factor of 1.0�, �b� the dashed curve for a 50 nm filament
radius that corresponds to a filament energy-loss factor of 1.562,
and �c� the dotted curve for a 200 nm filament radius that corre-
sponds to a filament energy-loss factor of 1.868.

0 1 2 3 4 5
1

1.4

1.8

2.2

2.6

a/d

κ
′/

κ

FIG. 5. A plot of a ratio of the flexural rigidity with consider-
ation of the filament energy-loss factor, 
�, to flexural rigidity with-
out consideration of the filament energy-loss factor, 
, as a function
of a /d for two filaments considered in Fig. 4: �a� the solid curve for
a 50 nm filament radius that corresponds to a filament energy-loss
factor of 1.562 and �b� the dashed curve for a 200 nm filament
radius that corresponds to a filament energy-loss factor of 1.868.
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tubulin dimers; see Sec. VI�, 1 �m bead radius, immersed in
an aqueous solution, and also with a=d=1 �m, we end up
with 10−17 for the order of magnitude in SI units of the flex-
ural rigidity estimate. We expect that with different values
for length and a /d the result may decrease by a few orders of
magnitude. Therefore, our method is concluded to be most
suitable for rigid filaments such as MT bundles, cilia, and
especially single-walled and multiwalled CNTs �13�.

Stiff filament approximation

For stiff filaments we have a condition �a /d�1 and
hence we can keep just the first term of the expansion of
s� exp�s�� in Eq. �18�. In that case, the filament’s cantilever
stiffness and flexural rigidity can be found from the follow-
ing formula:


 =
1

3
kL3 =

9��2L3

�R
�d2

a2� . �20�

In the last step to reach Eq. �20� we ignored �2 /4 with
respect to d2 /a2 that directly follows from our approxima-
tion. Note that in the case of the stiff filament approximation
there is no dependence on the filament energy-loss factor
because in that case the area swept by the filament is very
small �due to a small value of a with respect to d�. This is
also clear from Fig. 5 when both curves approach unity at
a /d=0 regardless of the amount of filament energy-loss fac-
tor.

V. SOURCES OF ERROR

In this section we wish to analyze the role of various
sources of experimental error in the evaluation of the fila-
ment stiffness. To reach that goal, first we derive an equation
for the percentage error for the first shooting-bead formula
based on the error in our measurable quantities a and d �also
�, �, L, and R when calculating �
0�. In the second part of
this section we consider the effects of thermal diffusion and
will demonstrate that using modern instruments these effects
are expected to be relatively small.

A. Error calculation for the first shooting-bead formula

Since it is our intention to derive an error formula for the
most general case we perform error calculations for the di-
mensionless flexural rigidity. At the end, knowing the error
of 
0, we can calculate the final error for the flexural rigidity
�see Appendix D for the calculation of �
0 and �
�. Taking
the differential of Eq. �4� gives

�� 



0
� =





0

2�2�W

4W3 + �2W
, �21�

but we know from Eq. �18� that

�W = ��a

a
+

�d

d
� W

1 + W
. �22�

Note also that as we are calculating the error for the first
shooting-bead formula we should consider �=1 in order to
get the above equation.

Substituting Eq. �22� into Eq. �21� we obtain

�� 



0
� =





0
��a

a
+

�d

d
� 2�2

�1 + W���2 + 4W2�
. �23�

To calculate the percentage error in the measurement of
dimensionless flexural rigidity, first we have to evaluate the
last ratio in Eq. �23�. Figure 6 shows this ratio in Eq. �23� as
a function of a /d. Measuring a /d, we need to find the cor-
responding value for this ratio from this graph but to facili-
tate the use of the above formula, we notice that the last
denominator in Eq. �23� is a monotonically increasing func-
tion on the entire domain of W that has its global minimum
equal to �2 at the beginning of the domain of W �at W=0
that corresponds to a /d=0�. This means we can estimate an
upper limit for the error calculation for the dimensionless
flexural rigidity as

�� 



0
� �





0
2��a

a
+

�d

d
� . �24�

Measuring a and d and knowing the resolution of the
instrument, we can estimate the upper limit for the percent-
age error for the dimensionless flexural rigidity from the
above formula. To provide a rough estimate of the error in
this method, we consider a=d=1 �m �these are very close
values to those seen in our preliminary experiment�. With an
accurate instrument it is possible to measure distances as
small as 0.1 nm. Reference �19� provides some information
about high-resolution single-molecule measurements. Here,
we consider �a=�d=1 nm to obtain a conservative estimate
for the percentage error. Substituting the above values to Eq.
�24� we obtain 0.4% for the upper limit �the actual value
found using Eq. �23� or Fig. 6 is 0.25%� of the percentage
error for the dimensionless flexural rigidity.

B. Diffusion

For large beads, more than a 1 �m in radius, random
thermal motion is not very pronounced �it has not been ob-
served in our preliminary experiment� but we nevertheless
wish to calculate the effects of thermal diffusion in a general
case for this experiment in this section.

0 0.2 0.4 0.6 0.8 1
1.2

1.4

1.6

1.8

22

a/d

f(
W

(a
/d

))

FIG. 6. Plot of the last ratio in Eq. �23�, f�W�=2�2 / ��1
+W���2+4W2��, as a function of a /d.
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We know that the diffusion constant for a spherical bead
with radius R at temperature T is kBT /6��R. Also the rela-
tion between the mean square displacement, ��X�2, and time,
t, involves the diffusion constant D as a proportionality con-
stant �20�, i.e., ��X�2=2Dt. Combining the two equations we
obtain

��X�2 =
kBT

3��R
t . �25�

The elapsed time for the damped motion of the bead is on
the order of asymptotic approach time constant 	. For ex-
ample, after a period of 9	, the bead passes 99.988% of its
final displacement �the number 9 has been used to simplify
the answer�, thus using the definition of 	 and the above
equation, the root mean square of the displacement due to the
diffusion can be found as

�X = �2kBT�R

3��2 �1/2

. �26�

At T=25 °C, in an aqueous solution for a bead with
1 �m radius and a density equal to that of water we find
�X=0.935 nm. This is a relatively small value that can
serve as an approximate measure of the experimental error in
the bead position for our calculation.

VI. DISCUSSION AND CONCLUSION

In our preliminary experiment �21� some tubulin-based
biotinylated bio-filaments have been produced due to the
spontaneous aggregation of the tubulin dimers in the labora-
tory sample. Estimating the dimensions of the filaments ob-
served in the solution �approximately 20–30 �m in length
and 200 nm in width�, we surmise that these semiflexible
objects were composed of microtubule bundles consisting of
several or more microtubules in a bundle. While the diameter
of a microtubule is 25 nm, the spatial resolution of the im-
ages was not sufficient to ascertain how far apart each mi-
crotubule was in a bundle. Since the images indicate splay-
ing apart of bio-filaments at far ends of some of the bundles,
we conclude that these were not individual macrotubes but
several microtubules forming a bundle. During the experi-
ment �when pushing the tip of a clamped bio-filament by a
streptavidin coated bead to create an attachment point�, we
observed a strange effect involving a catapultlike release of
the microbead from the filament and a subsequent projectile
motion until it stopped following a very rapid movement
through the solution. Seeing this effect that can be described
as a “jumping bead” phenomenon in the laboratory was the
main motivation behind our effort to find a physical descrip-
tion reported in the present paper. While the experiment itself
is still in progress, the method proposed here allows us to
probe one of the important characteristics of stiff bio-
filaments and nano-filaments with a very fast and relatively
uncomplicated measurement of the initial and final positions
of the bead. Also, knowing precisely the cross section of the
filament and measuring the associated flexural rigidity, we
are able to calculate the Young modulus of the filament.

In conclusion, we note that the method presented in this
paper offers numerous advantages over the other methods

currently in use �e.g., the buckling force method �22,23�, the
hydrodynamic flow method �24,25�, the wiggle and relax-
ation methods �26,27�, or the thermal fluctuation technique
�28�� for the reasons listed below:

For this experiment, the bead needs not be attached to the
filament; actually, this was one of the reasons that guided the
introduction of the proposed method. It needs just a single
trap, there is no need to find the force exerted on the bead by
the trap, there is no need to know the exact shape of the
filament, there is no need to oscillate the trap, there is no
need to measure the time, and there is no need to measure the
velocity of the bead or the rod. The only measurement that
we need to perform is the measurement of the length for a
and d; also because the ratio of a /d is important and not a
and d individually, there is no need to calibrate the micro-
scope.

Another aspect that we should briefly discuss here is the
logarithmic dependence of the viscous drag torque exerted
on the filament on the radius and length of the filament. Even
for a thin filament it is important to consider the effects of
filament energy-loss factor on the dimensionless flexural ri-
gidity curve. Figure 3 shows that even for small values of the
filament radius, the filament energy-loss factor is not very
close to 1. This is also clear from Fig. 4, as we see the
dimensionless flexural rigidity curve for the filament with a
50 nm radius �the dashed curve� is much closer to the dimen-
sionless flexural rigidity curve for the filament with a 200 nm
radius �the dotted curve� compared with the curve without
filament energy-loss consideration �the solid curve�.

Also dependence of the dimensionless flexural rigidity on
the length of the filament via the filament energy-loss factor
is very important. Even for a small radius of the filament
compared to the bead’s radius if we increase L, L varies
much faster than ln�L� in Eq. �9�. Therefore, � will have a
considerable value.

Ultimately we demonstrated that the effect due to the fila-
ment energy-loss factor on the dimensionless flexural rigidity
curve increases as a /d increases. As we know, when this
ratio increases for a filament with a known radius and length
and also a known radius of the bead, the �dimensionless�
flexural rigidity decreases. This means consideration of the
filament energy loss �or filament drag� is more important for
filaments with less rigidity.
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APPENDIX A: CALCULATING THE ORDER OF
MAGNITUDES FOR VERTICAL DISPLACEMENT DUE

TO THE BUOYANT FORCE AND THE WEIGHT
OF THE BEAD

It has been assumed that the density of the bead is equal
or close to the density of the solution �in most cases this will
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be composed mainly of water�, which means that the buoy-
ant force and the weight of the bead cancel each other out.
Therefore, we need not make a correction for the apparent
weight of the bead, but this method still works even if the
density of the bead is different from the density of the solu-
tion because of the following two reasons. Referring to Fig.
1, which is in a horizontal plane, the vertical forces �the
effects of gravity and buoyant forces� do not provide any
contribution to the horizontal motion. Second, the experi-
ment pertains to a process that occurs in a fraction of a sec-
ond that depends on an asymptotic approach time constant.
In this appendix we estimate how much the bead moves
vertically during the experiment assuming the density of the
bead is different from the density of the solution. If this
distance, b, is large with respect to the length of the focal
region of the microscope, the resolution of the image of the
bead after the experiment will be lost.

The vertical force exerted on the bead is 
m−ms
g, where
ms denotes the displaced mass of the solution. Therefore, the
vertical acceleration of the bead is

az =
m − ms

m
g . �A1�

The elapsed time for this motion is on the order of the
asymptotic approach time constant; therefore the total verti-
cal distance is on the order of g�m−ms��9	�2 /2m or

b � O�9

8
mg


m − ms

�2�2R2 � . �A2�

With a typical value of �=10−3 Pa·s for water and R
=1 �m, ms= 1

2m�4�10−15 kg for aqueous solution, we
obtain b�O�10−13�m.

This means that the vertical displacement due to the buoy-
ant force and the weight of the bead during the experiment is
definitely negligible and we will not lose the focus when
viewing the bead after it stops.

APPENDIX B: ENERGY CONSERVATION
INVESTIGATION

It is important to validate the solution by making sure that
the initial potential energy of the filament is equal to the total
energy loss �Q� of the bead due to the viscous drag force
exerted on it over the course of its motion. Infinitesimal en-
ergy loss of the bead during its motion is given by

dQ = − dWv = − Fvdx = 6��Rẋ2dt . �B1�

Note that in the above equation we calculate the negative
of the work done on the bead by the viscous drag force in
order to arrive at a positive value for the energy loss of the
system. The value of ẋ2 can be found by taking the derivative
of Eq. �2� and squaring it, so that

ẋ2 = a2 exp�− 2�t���2 cos2 
t + 
2 sin2 
t + �
 sin 2
t� .

�B2�

From Eqs. �B1� and �B2� we obtain

Q1 = 3��Ra2

0

t0

exp�− 2�t���2 + 
2 + ��2 − 
2�cos 2
t

+ 2�
 sin 2
t�dt . �B3�

The subscript 1 in Q1 indicates that this is energy loss that
occurred in the first part of the motion �underdamped har-
monic motion from t=0 to t= t0=� /2
�. The result of the
above equation is

Q1 =
1

2
ka2 −

1

2
ma2
2 exp�−

�



�� . �B4�

Energy loss in the second part of the motion �damped
motion� can be found using the following integral:

Q2 = 6��R

0

�

a2
2 exp�−
�



��exp�− 4�t�dt

=
1

2

3��R

�
a2
2 exp�−

�



�� . �B5�

From Eqs. �B4� and �B5� we find that the total energy loss
of the bead during its whole motion is exactly equal to the
potential energy stored in the filament just before releasing
the bead. This then validates the solutions we found earlier in
the paper.

Although to prove the conservation of energy we did not
need to calculate the bead energy loss in terms of measurable
quantities a and d; for completeness of the solution we
evaluate Q1 in terms of those quantities. In order to do that
we have to replace k and 
 in Eq. �B4� in terms of a and d.
Note that k in terms of a and d has been already found in Eq.
�4� and inserting this equation into Eq. �5� we easily find the
following equations for k and 
:

k = m�2� �2

4�W��a
4d ��2 + 1�, 
 =

��

2W��a
4d � . �B6�

Replacing the above expressions in Eq. �B4� followed by
some simple algebra gives

Q1 =
1

2
ma2�2� �2

4�W��a
4d ��2�1 − exp�− 2W��a

4d
�	� + 1� .

�B7�

APPENDIX C: CALCULATING THE RATIO OF THE
ROD’S SWEPT AREA TO THE FILAMENT SWEPT AREA

Under the small-angle approximation, the deflection of a
beam, y, with length L as a function of distance with respect
to the pivot, x �see Fig. 2�, can be easily found by solving the
beam equation �29�,

y�x� =
a

2L3 �3Lx2 − x3� . �C1�

By integrating the above equation from 0 to L, the area swept
by the filament �curved AD� is
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SAD = 3
8aL . �C2�

The area swept by the rod �BD� in the case of small deflec-
tion is

SBD = 1
4aL . �C3�

Dividing Eq. �C3� by Eq. �C2� yields the ratio we seek.

APPENDIX D: CALCULATION OF ��0 AND ��

We know that


0 =
9��2L3

4�R
, �D1�

thus for �
0 we have

�
0 = 
0���

�
+

2��

�
+

�R

R
+

3�L

L
� . �D2�

� and � can be measured very accurately �as we use the
values for the bulk material�, a typical value for �R /R for a
good microsphere is 0.02, and �L /L can be considered as
0.01. It means the percentage error for �
0 can be almost
5%.

Finding �
 with the knowledge of ��
 /
0� from Eq. �23�
and �
0 from Eq. �D2� is now straightforward,

�
 = �� 



0
�
0 +





0
�
0. �D3�
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